Zeros of real irreducible characters of finite groups
نویسندگان
چکیده
منابع مشابه
finite simple groups with number of zeros slightly greater than the number of nonlinear irreducible characters
the aim of this paper is to classify the finite simple groups with the number of zeros at most seven greater than the number of nonlinear irreducible characters in the character tables. we find that they are exactly a$_{5}$, l$_{2}(7)$ and a$_{6}$.
متن کاملZeros of Characters of Finite Groups
There are some variations of theorems A and B which are simply not true. For instance, if χ in Irr(G) has degree divisible by p, then there does not necessarily exist a p-element on which χ vanishes. It is enough to consider L2(11) with any character of degree 10 and p = 2. It is also not true that if χ vanishes on some element x, then χ has to vanish on some p-part of x. For instance, if G is ...
متن کاملOrthogonality of Cosets Relative to Irreducible Characters of Finite Groups
Studied is an assumption on a group that ensures that no matter how the group is embedded in a symmetric group, the corresponding symmetrized tensor space has an orthogonal basis of standard (decomposable) symmetrized tensors.
متن کاملIrreducible characters of Sylow $p$-subgroups of the Steinberg triality groups ${}^3D_4(p^{3m})$
Here we construct and count all ordinary irreducible characters of Sylow $p$-subgroups of the Steinberg triality groups ${}^3D_4(p^{3m})$.
متن کاملOn the irreducible characters of Camina triples
The Camina triple condition is a generalization of the Camina condition in the theory of finite groups. The irreducible characters of Camina triples have been verified in the some special cases. In this paper, we consider a Camina triple (G,M,N) and determine the irreducible characters of G in terms of the irreducible characters of M and G/N.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra & Number Theory
سال: 2013
ISSN: 1944-7833,1937-0652
DOI: 10.2140/ant.2013.7.567